D

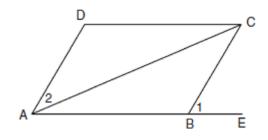
Regents Exam Questions G.CO.C.11: Quadrilateral Proofs

1 In the diagram below of quadrilateral ABCD, E and

F are points on \overline{AB} and \overline{CD} , respectively,

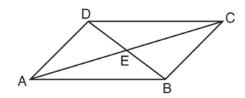
Which conclusion can be proven?

R

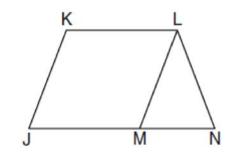

G.CO.C.11: Quadrilateral Proofs

 $\overline{BE} \cong \overline{DF}$, and $\overline{AE} \cong \overline{CF}$.

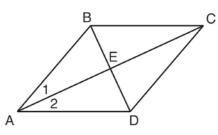
1) $\overline{ED} \cong \overline{FB}$


www.jmap.org

- 2) $\overline{AB} \cong \overline{CD}$
- 3) $\angle A \cong \angle C$
- 4) $\angle AED \cong \angle CFB$
- 2 Given: parallelogram *ABCD*, diagonal \overline{AC} , and \overline{ABE}

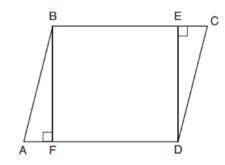

Prove: $m \angle 1 > m \angle 2$

3 In parallelogram *ABCD* shown below, diagonals \overline{AC} and \overline{BD} intersect at *E*.



Prove: $\angle ACD \cong \angle CAB$

4 Given: JKLM is a parallelogram. $\overline{JM} \cong \overline{LN}$ $\angle LMN \cong \angle LNM$ Prove: JKLM is a rhombus.



5 Given: Quadrilateral *ABCD* with diagonals \overline{AC} and \overline{BD} that bisect each other, and $\angle 1 \cong \angle 2$

Prove: $\triangle ACD$ is an isosceles triangle and $\triangle AEB$ is a right triangle

6 Given: Parallelogram *ABCD*, $\overline{BF} \perp \overline{AFD}$, and $\overline{DE} \perp \overline{BEC}$

Prove: *BEDF* is a rectangle

Name:

G.CO.C.11: Quadrilateral Proofs Answer Section

- 1 ANS: 2 REF: 011411ge
- 2 ANS:

ANS: Because ABCD is a parallelogram, $\overline{AD} \parallel \overline{CB}$ and since \overline{ABE} is a transversal, $\angle BAD$ and $\angle 1$ are corresponding

Because ABCD is a parallelogram, $AD \parallel CB$ and since ABE is a transversal, $\angle BAD$ and $\angle 1$ are corresponding angles and congruent. If $m\angle BAD > m\angle 2$, then $m\angle 1 > m\angle 2$, using substitution.

REF: 060533b

3 ANS:

Parallelogram *ABCD*, diagonals *AC* and *BD* intersect at *E* (given). *DC* || *AB*; *DA* || *CB* (opposite sides of a parallelogram are parallel). $\angle ACD \cong \angle CAB$ (alternate interior angles formed by parallel lines and a transversal are congruent).

REF: 081528geo

4 ANS:

 $\overline{JK} \cong \overline{LM}$ because opposite sides of a parallelogram are congruent. $\overline{LM} \cong \overline{LN}$ because of the Isosceles Triangle Theorem. $\overline{LM} \cong \overline{JM}$ because of the transitive property. *JKLM* is a rhombus because all sides are congruent.

REF: 011036ge

5 ANS:

Quadrilateral *ABCD* with diagonals \overline{AC} and \overline{BD} that bisect each other, and $\angle 1 \cong \angle 2$ (given); quadrilateral *ABCD* is a parallelogram (the diagonals of a parallelogram bisect each other); $\overline{AB} \parallel \overline{CD}$ (opposite sides of a parallelogram are parallel); $\angle 1 \cong \angle 3$ and $\angle 2 \cong \angle 4$ (alternate interior angles are congruent); $\angle 2 \cong \angle 3$ and $\angle 3 \cong \angle 4$ (substitution); $\triangle ACD$ is an isosceles triangle (the base angles of an isosceles triangle are congruent); $\overline{AD} \cong \overline{DC}$ (the sides of an isosceles triangle are congruent); quadrilateral *ABCD* is a rhombus (a rhombus has consecutive congruent sides); $\overline{AE} \perp \overline{BE}$ (the diagonals of a rhombus are perpendicular); $\angle BEA$ is a right angle (perpendicular lines form a right angle); $\triangle AEB$ is a right triangle (a right triangle has a right angle).

REF: 061635geo

6 ANS:

Parallelogram *ABCD*, $\overline{BF} \perp \overline{AFD}$, and $\overline{DE} \perp \overline{BEC}$ (given); $\overline{BC} \parallel \overline{AD}$ (opposite sides of a \Box are \parallel); $\overline{BE} \parallel \overline{FD}$ (parts of \parallel lines are \parallel); $\overline{BF} \parallel \overline{DE}$ (two lines \perp to the same line are \parallel); *BEDF* is \Box (a quadrilateral with both pairs of opposite sides \parallel is a \Box); $\angle DEB$ is a right \angle (\perp lines form right \angle s); *BEDF* is a rectangle (a \Box with one right \angle is a rectangle).

REF: 061835geo